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Abstract

We examine the statistical properties of data relating to clinical diagnoses extracted from the
medical database of our hospital. Specifically, we analyze all diagnoses given to all patients (in-
and out-patients). The data consisted of both data input to computers as Japanese names, and
the data input as ICD10® codes (International Classification of Diseases 10th Revision). We
adapted the Zipf approach to analyzing the frequencies of clinical diagnoses for these two data
groups. We found that both group types have the inverse-power relationship between the rank
order of diagnoses and the frequency of the appearance of these diagnoses. (This relationship
is called Zipf’s law, which is observed in natural language.) Though the reason why these sets
follow Zipf’s law is unknown, we speculate that the complex interaction between doctor and
patient is the cause for adherence to Zipf’s law.

Keywords: Zipf’s Law; Complex System; Clinical Diagnosis; Medical Structure; Fractal.

5The International Classification of Diseases is a system of categories for classifying various forms of morbidity. The ICD is
designed to facilitate the statistical study of disease phenomena.
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1. INTRODUCTION

In medical treatment, clinical diagnosis can be
viewed as the most basic piece of information.
When a doctor examines a patient, the first task
is to determine the clinical diagnosis. Then, the
doctor can proceed with medical treatment based
on that diagnosis. For hospital management, coded
diagnoses are very important. Changes in the
frequencies of diagnoses are important from the
perspective of medical policy and budget making.
However, it has been difficult to find investigations
relating to the frequency distribution of diagnostic
data. In this study, we found that the frequencies
of clinical diagnoses have certain statistical features
in common with natural languages.

As for natural languages, it is known that the
frequencies of words follow what is called Zipf’s
law.1-3 To apply this law, one calculates the fre-
quencies of words within a given text. If all the
words in the text are arranged in rank order, from
most frequent to least frequent, an inverse power-
law relation holds between the frequencies and the
rank of the frequencies. The frequency of the word
F,,, which has the rank n, is expressed by the fol-
lowing equation

A

Fn = R
where A is constant. In this equation ¢ is referred
to as Zipf exponent, and in natural languages the
exponent ¢ was found to be close to one. In other
words, log-log plots of the frequency versus rank
show a linear relationship between these two vari-
ables. This relation is called Zipf’s law. This law
holds not only for languages, but also for many
situations (e.g. the population of cities and their
rankings).* In particular, it was recently discov-
ered that DNA sequences have the same linguistic
features.>-12

Our objectives were to determine whether the fre-
quencies of clinical diagnoses follow Zipf’s law and
to investigate the influence of coding diagnoses on
the distribution of frequencies.

2. METHODS

We analyzed data of the diagnoses stored within
the database of Toyonaka Municipal hospital. Two
data sets were analyzed separately; one is the set of
diagnoses written on charts before October 1997,
and the other is the set of diagnoses input into

a computer after November 1997. The diagnoses
before October 1997 were input into the computer
by clerks, using the Japanese names on the charts
of patients who had received medical advice at least
once within the one-year period before October
1997. These data were input as Japanese text with-
out code. Therefore, several names that indicate
the same disease may be entered as different names
due to differences in writing. Moreover, there is the
possibility of errors due to incorrect input or typos
on a chart, and in these cases, we input this erro-
neous name as a new different name. We think that
the probability of making the same error twice is
low, and in this case, the frequency of that diagno-
sis only amounts to one. A considerable number of
the diagnoses showing a frequency of one is thought
to be obtained by such errors and so we excluded all
diagnoses showing a frequency of one from our anal-
ysis. The diagnoses were written on charts between
July 1953 and October 1997. The total number of
patients was 39212 and the total number of diag-
noses was 101 760, so the average was 2.6 diagnostic
names per patient. Henceforth, we call this group
the “freely written group.”

The second group of data was collected between
November 1997 and October 1998, and these data
were directly input by doctors during this period.
These data were basically input in the form of name
codes that are registered as master data in the
computer. Doctors input the Japanese name itself
only when they were unable to find a corresponding
name code. Entered name codes consist of six char-
acters and the first four characters are the ICD10
codes (International Classification of Diseases 10th
Revision). The last two characters are Toyonaka’s
own additional coding characters. With this ad-
ditional coding, we can provide a more detailed
categorization than ICD10 code alone. A corre-
spondence map between this code and the Japanese
disease name is registered as master data in the
computer. By choosing a Japanese name on the
computer, a doctor can input data with its code.
Both code and the Japanese name are entered in
the database file as the clinical diagnosis. In the
present study, we used only the name codes for anal-
ysis. We did not use data without codes. The total
number of patients was 47964 and the total num-
ber of diagnoses was 137933, so the average was
2.9 diagnoses per patient. Data that had no diag-
nosis codes comprised 3.3% of all data, and were
excluded from further analysis. Henceforth, we call
these data the “coded group.”



We analyzed all data from all patients (in- and
out-patients). With regard to a particular patient
(and their initial diagnosis), the diagnosis (i.e. the
name of the disease) may change after the first med-
ical examination based on more detailed medical
tests. However, we counted all diagnoses as distinct
data.

We evaluated the frequencies of clinical diagnoses
for each group and the rank of each diagnosis (the
most frequent diagnosis has the rank of one, the
second most frequent diagnosis has the rank of two,
and so on). Moreover, we plotted a logarithm of
the frequency versus a logarithm of the rank (Zipf
plot”). In the freely written group, we defined two
names (Japanese names) as the same if and only
if all characters contained in each diagnosis were
completely identical (e.g. “Gastric Cancer” and
“Cancer of Stomach” are regarded as different diag-
nosis). Therefore, we sometimes counted two diag-
noses indicating the same disease as different ones
only due to differences in the description.

In order to investigate the details of the distri-
bution, we classified each data set into subgroups
according to departments from which patients re-
ceived medical advice and attention. Furthermore,
with respect to the coded group, we also classi-

Clinical Diagnoses Following Zipf’s Law 343

fied these data into subgroups according to doctors.
These subgroups were also analyzed using a Zipf
plot.

3. RESULT

3.1 Freely Written Group

Figure 1 shows the result of the Zipf plot in the
freely written group. In this figure (and these plots,
in general), the z-axis denotes the logarithm of the
rank of frequencies and the y-axis denotes the loga-
rithm of frequencies. Moreover, regression lines for
each data set are also expressed in the figures. For
all departments, the data are fitted well by regres-
sion lines. These results mean that for all depart-
ments, the data follow Zipf’s law. However, at high
frequencies (from rank 1 to 10, i.e. from 0 to 1 on
the z-axis) the data deviate less from the regres-
sion lines. These deviations are large in the “total
diagnoses” group and in the internal medicine
group. Causes of these deviations, especially among
the total diagnoses and the internal medicine
groups, will be discussed in the next section.
Table 1 shows slopes of the regression lines for some
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Fig. 1 Zipf plots of the freely written group. A logarithm of the frequency vs. a logarithm of the rank is plotted on
the figures. The straight lines denote regression lines of data: (a) total diagnoses, internal medicine and pediatrics, and

(b) Surgery, ophthalmology and dermatology.
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Table 1 Results of regression analysis.
Free written group Coded group
¢ r? N ¢ r? N
Total 1.20+£0.002 099 93253 1.64 £0.007 0.95 132621
Internal medicine 1.32+0.006 0.98 29640 1.58 £0.009 0.97 29634
Pediatrics 1.30£0.009 098 8120 1.43+£0.009 0.97 12164
Surgery 1.14+0.007 0.98 7946 1.31+0.009 0.97 7278
Neurosurgery 0.96 +0.008 0.98 1995 1.07+£0.014 0.96 1358
Ophthalmology 1.04 £0.005 0.99 5907 1.65+0.028 0.94 6440
Orthopedics 083+0.004 0.98 5770 1.58 £0.020 0.94 10350
Cardiac surgery 097£0.023 094 831 097+0.014 0.96 791
Dermatology 0.98 £0.006 0.98 3623 141+£0.012 0.96 6950
Urology 1.25 + 0.009 0.99 4289 1.50 £0.015 0.97 5227

Note: The result of regression analysis in the free written group and coded group. The Zipf
exponent ¢ and the coefficient of determination r? are obtained by linear regression analyses
for the data consisting of logarithms of the frequency and the rank of diagnosis. N denotes

the number of data of each subgroup.

departments and for the total set. In the freely
written group, these slopes are close to one.

3.2 Coded Group

For all groups except the total diagnoses and the
internal medicine groups, data are fitted well by
Zipf’s law, especially at the low frequency regions

[Figs. 2(a)-(c)]. As shown in Fig. 2(d), subgroups
corresponding to doctors are also follow Zipf’s law.
However, for internal medicine and total diagnoses,
data points deviate considerably from the predicted
straight lines (Fig. 3). The deviations from straight
lines at high frequencies are larger than those in
the freely written group. These phenomena will be
described in detail later.



Clinical Diagnoses Following Zipf’s Law 345

35 |

log frequency
o -

-
o
T

0.5

log rank

(a)

45

© pediatrics

g
o
T

log frequency
L]

-
(4]
T

05 |

0 05 1 15 2 25 3
log rank
(b)

Fig. 2 Zipf plots of the coded group. The straight lines denote regression lines of data. (a), (b) and (c) denote surgery,
pediatrics and dermatology, respectively, and (d) denotes data of doctor A.
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Fig. 3 Zipf plots of total diagnoses and internal medicine in the coded group. The data show large deviations from the
regression lines, which are denoted by the straight line in the figure.

4. DISCUSSION

4.1 The Union of Zipf Sets
Causes the Deviation

We indicate that in almost all groups, the distribu-
tion of clinical diagnoses follows Zipf’s law. How-
ever, in analyzing the details of the results, we
can recognize the deviation from Zipf’s law at high
frequencies.

We begin by considering the result obtained from
the present study. A diagnostic set of a certain
department (e.g. surgery, pediatrics, etc.) is the
union of diagnostic sets of all doctors who belong
to this department. From the present results, the
sets of doctors are Zipf sets (a Zipf set indicates a
set that follows Zipf’s law), and the union of these
sets (i.e. the set of the department) is also a Zipf
set. This fact suggests that the union of several
Zipf sets is also a Zipf set. Similarly, the total set
of the hospital is the union of the sets of all depart-
ments and the total set is also a Zipf set. Moreover,
the deviation at high frequencies of the total set is
large compared to those of the sets of individual

departments. This observation suggests that the
union of Zipf sets has the large deviation at high
frequencies compared to the original Zipf sets.

We next consider a simple mathematical
example.

Example. Suppose two sets of equal size, which
have no common diagnosis, and follow Zipf’s law
with a Zipf exponent of 1. For instance, data sets
from ophthalmology and urology satisfy this con-
dition. We suppose the numbers of diagnoses are
both N. Combining the two sets, the number of di-
agnoses amounts to 2N. If two sets have the same
distribution and do not have any common diagno-
sis, the diagnosis with rank = in the source sets will
have the rank 2n(= K) or the rank 2n — 1 in the
unified set. This frequency is A/n (A is constant).
Thus, the frequency Yx for the diagnosis with rank
K in the new set is expressed in terms of the fol-
lowing equation: Yx = Y2, = A/n = 24/2n =
2A/K = Y,—1 = Yx_1. Therefore, for a large n,
Yx asymptotically approaches Zipf’s law, and has
the same Zipf exponent as the source sets. How-
ever, at high frequencies (in other words, where K
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Fig. 4 Zipf plot of the union of five Zipf sets. The Zipf plot of the union of five sets, each of which follow Zipf’s law and has
no common diagnosis. Figure shows that this union asymptotically follows Zipf’s law, but at high frequencies, data deviate

from the regression line.

is small), it deviates from Zipf’s law. Figure 4 shows
the Zipf plot of the union of five sets with no com-
mon diagnoses. At low frequencies, we can see that
the data are well fitted by a straight line. However,
at high frequencies, data deviate from the expected
line with the data points falling below the line.

This simple example indicates that the union of
several sets, which follow Zipf’s law and have no
common diagnosis, is asymptotically fitted by Zipf’s
law. However, at high frequencies, such sets will
deviate from Zipf’s law.

This theoretical consideration, as well as the
results obtained from the present data, indicates
that the union of several Zipf sets is one of the
causes of the deviation from Zipf’s law at high fre-
quencies. Moreover, this suggests that the sets of
diagnoses for this analysis (total set of diagnoses,
sets of each department, and sets of each doctor)
consist of the union of some smaller subgroups, each
of which follows Zipf’s law.

In the analysis of the coded group, the deviations
from straight lines at high frequencies are larger
than those in the freely written group, especially
in internal medicine and the total set of diagnoses.
This suggests some other cause in addition to the

union of Zipf sets. A possible cause is the satu-
ration of diagnoses, which indicates the situation
where the number of unused diagnoses decreases as
a result of using too many names. In the coded
group, the number of usable diagnoses is limited to
the number of codes that are registered. The num-
ber of master data being used at this time is about
12000. If the number of names used for patients in-
creases to approaching the upper limit in the master
data, it is possible that the saturation of diagnoses
causes a deviation from Zipf’s law. In the case of
the total set of diagnoses, the number of diagnoses
used is over 3200, so it is possible that the influence
of the saturation of diagnoses is shown.

4.2 Giving a Clinical Diagnosis
Depends on Context

According to this study, we found that the set of
clinical diagnoses follows Zipf’s law, or that the sets
of clinical diagnoses consist of the union of several
sets that follow Zipf’s law. It is surprising that
a common order (i.e. Zipf’s law) can be seen be-
tween several types of diagnostic set (e.g. sets of
department, sets of doctors, etc.). Conventionally, a



diagnosis was considered to be an objective label
that was only dependent on each patient. Moreover,
a disease (diagnosis) was thought to objectively ex-
ist within the population. The patient group of a
given hospital is considered to be a sample of the
population with a given diagnosis frequency. Thus,
the diagnostic frequency of that patient group was
assumed to be dependent on the population and
the sampling method employed. According to this
understanding, it would be difficult to assume that
Zipf’s law would apply as a common law to all sam-
ple groups (by department and doctor), including
the total diagnostic group, that are sampled from
the population by different methods.

Zipf’s law appears to apply to the relationship
between word frequencies of natural languages, city
population, and the rankings that are derived from
them. This law has been highlighted in relation to
nonlinear dynamics that are represented by Fractal
Mathematics and Chaos Theory.!!3 As implied by
its name, nonlinear dynamics studies systems (such
as those in physiology) in which output is not pro-
portional to input.} It is also a study of systems,
which are described by several variables which inter-
act nonlinearly. A Zipf’s distribution is suggested
as a distribution created from such nonlinear inter-
action. While the explanation of Zipf’s distribution
still remains unclear, the inter-variable correlation
(interaction) over a long period is undoubtedly an
important factor.!® The probability of word appear-
ance in a natural language, for example, is not in-
dependent and would be affected by the context.
This is considered a necessary condition to create
a Zipf’s distribution. In other words, it is assumed
that the word is context-dependent.

When applying this concept to a diagnosis, it in-
dicates that a patient diagnosis may be affected by
the diagnosis of a previous patient. This sugges-
tion is surprising since it contradicts conventional
understanding that a diagnosis was dependent only
on the patient.

We will further review the process involved for
making a diagnosis. Not all clinical diagnoses are
independent of each other. In fact, some diagnoses
are strongly related one another. For example, a
patient who shows symptoms of a common cold,
may be given a diagnosis of one of following dis-
eases: common cold, upper respiratory infection,
acute rhinitis, acute pharyngitis or acute bronchi-
tis. These names are easy to use interchangeably
(or to diagnose in error). In this sense, these terms
are closely related to each other; in other words,
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the “distance” between them is short. However, a
femoral fracture and an upper respiratory infection
would not be confused, so we think that these two
diagnoses are unrelated and the distance between
them is great.

When diagnosing a patient, a doctor must choose
a diagnosis that most closely resembles the symp-
toms. For instance, consider a situation where sev-
eral close diagnoses fit the symptoms of the patient,
but there is no absolute standard for selecting one
of these due to the vagueness that each diagnosis
has. In such cases, the selection of the diagnosis
depends on the doctor’s free choice. This situa-
tion is similar to a situation in which we select one
from many possible words when we write a compo-
sition. In natural language, a word is selected based
on the context. Similarly, free selection of a given
diagnosis is affected by many factors. These, for ex-
ample, include the diagnosis of a patient previously
seen with similar symptoms, a recent diagnosis fre-
quency of that hospital, the doctor’s skill, and so
on. As a result, determining a diagnosis is not only
dependent on the patient’s condition, but also on
the conditions of the doctor, previous patients and
the hospital, as well. It is assumed that this effect
creates an interdiagnostic correlation and this cor-
relation may satisfy a necessary condition to create
a Zipf’s distribution.

A hospital is a system that consists of com-
plicated interactions between doctors, patients,
nurses, etc. We think that these complicated in-
teractions yield a new order called Zipf’s law and
this new order cannot be predicted by any study of
each element (doctors, patients, nurses, etc.). This
means that it is important to regard a hospital sys-
tem as a “complex system” as a whole.!

Lastly, let’s think about the effects of Zipf’s
distribution on medical service. In a set that fol-
lows Zipf’s law, the relative frequency of a certain
element (i.e. the frequency of a certain element/the
total frequency) depends on the size of the set.16-18
If, for example, the Zipf exponent is 1, the rela-
tive frequency of a rank 1 diagnosis is 0.28, when
the group size is 100. However, the relative fre-
quency of the same diagnosis would be 0.13 when
the size is 10000. Moreover, when the Zipf expo-
nent is 1, the relative frequency tends to get closer
to zero in proportion to the increase in group size.
This is quite surprising and unintelligible consid-
ering that the group is a sample from the popu-
lation. According to conventional rationales, the
relative frequency of a diagnosis was thought to
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be its relative frequency in a group sampled from
the assumed virtual population. In this case, the
variation in relative frequency was thought to be a
random fluctuation according to the sampling pro-
cedures, and therefore, was assumed to be a normal
distribution around a given relative frequency. The
understanding was that the true relative frequency
was sought in the form of a mean relative frequency
after repeated sampling. However, it is not possi-
ble to define the true diagnostic relative frequency
according to the above understanding in the case
of a Zipf distribution where the relative frequency
varies according to the group size. This may show
that the measure of “the relative frequency of a
diagnosis” obtained by extension of the relative fre-
quency of a sample does not originally exist. This
is similar to the situation in which the idea “a curve
without length or a plane without area” arises from
the discovery of “Fractal.”1®

4.3 Many Medical Indices also
Follow Zipf’s Law

Though we do not present the data at this time, in
addition to the clinical diagnoses, medical indices
such as average length of hospital stay, frequencies
of medical treatments expressed in terms of ICD9-
CM (International Classification of Disease 9th
Revision, Clinical Modification) and medical fees,
also follow Zipf’s law. These facts suggest that
not only the clinical diagnoses but also the medical
structure itself is based on complex interactions be-
tween patients and a medical system that includes a
medical team, medical facilities and medical equip-
ment, and all of these interactions yield Zipf’s law.
A more detailed study of the healthcare delivery
structure on the basis of the theory of complex sys-
tems is required.

5. CONCLUSION

It was proven that the diagnostic sets based on the
doctor’s diagnoses followed Zipf’s law. This indi-
cates that the diagnostic set is a set interactively
created by the doctor, patient and hospital, and
it follows a certain order called Zipf’s law. This
fact indicates that the medical system, consisting
of doctor-patient interaction, is a so-called complex
system. Furthermore, the indication that diagnos-
tic sets observe Zipf’s law may possibly have ma-
jor effects on changing the conventional concept of
diagnostic frequency rate.
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